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SUMMARY

There is experimental evidence that channel flows involving
shock-free deceleration through the epesd of sound are unstable.
An analysis of nonviscous unsteady charnel flow has.been made to
gain some insight,into this apparent instability, to provide some
infornation on the factors determining the minimum shock intensity
for a stable flow, and to study W general the formatim @d motion
of shocks in channel flows . It ~s hoped that this treatment will
be useful in two ways. Tirst, the theory will have direct ap@i-
catlon to the study of normal shocks occur~g in supersonic nozzles
and diffusers. % cond, it m~@t be usef~ in lead.~q to the
solution of the vore difficult problw~,sof the formatioq and.
stability of shocks in ..twoand three dimensions.

The analysis is Eiivi?edinto two parts. In pm% I, Riemann’s
theory of the propagation of finite-amplitude disturbances in a
homogeneous medium is extien~edto the case where upstream-moving
pulses are superposed on a decelerating transonic channel flow.
Shock waves are formed as the pulse is propaga’hd, as in Riemann’s
problem. If the intens;ty of tile shocks is assumed to be very small,
the pulse approaches a trapped” state in which a portion of the.
decelerating chann31 flow is converted to an accelerating flow which
is an alternate steady-st,ateso]-utionfor the channel. To the order
of accuracy of the theory of pert I, the trapped pul~e becomes
stationary in the sonic region of the channel and, thus, the flow
has neutral stabiliW.

In part 11, the assumption of weak shocks is dropped end the
motion of shook waves is considered more accurately. It iS found
that trapped expansicm pulses are consumed by the shock motion and
trapped compression pulses inevitably
that smooth transonlc deceleration is
coming from the rear of the channel.

grow. !lkms,it is concluded
unstable to compression pulses

●
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A similar,analys?.sis.mad~ for the case wherd the shock wave
forms a part of tho equilibrium channel flow. The shock position
is found to be stable in diverging bhmnels and unstable In
converging channels. This analysis leads also to suggestions for
the design and testing of supersmic diffusers.

●

.-

. .

INT!RODUCTICN

Zkperimental fnvest3gation of transcaic chanzielflows hae
established a striking dlfferonce between the processes of
acceleration and deceleration through the speed of eound. In a
de Laval nozzle, a gas is accelerated to the velocity of sound in
the convergi]~ (that is, converging downstream) part of MO nozzle
and Is accelerated further to supersonic vol.ocitiesin the diverging
part. If the nozzle js ehapeclto avoid the condensation of
co’iqnwssionwaves, the acceleration through tho speed of sound can
he made very snoothly (without shock waves).

As far as is Jmown, the reverse flow, smooth deceleraticm
through the speed of sound in a Ch~iU2Glflow, has nevsu?been
observed. The experiment.1 situation can be suummd uy briefly as
follows: In t.hoprocoss of startin~ the snyersonic flow, a normal
shock alwe.ysforms ahead.of the converging part of the chnnnel
(supersonic diffuser). By suitably changing the velocities and
pressures at the ends of the diffueei, the normal shock can be made
to Jump to the diverging part. With further chances in velocities,
pressures, and/or geometry, the normal shock can be pushed up the
diver@ng chmnel nnd its Intensity reduced somewhat. Howover,
before the shock canbe madeto disappear, it suddenly (to visual
olservaticn) jumps to a ~cmitlon ahead of the converging part of the
diffuser and the startin~ Trocese must begin again, The experiments
strongly indicate, therefore, that smooth deceleretian through the
speed of sound in a channel flow is unstable.

An analysis of tkds apparent ins~lility is the central
problem of this p~per. Specifically$ the stability of transonic
deceleratin~ channel flow to a special type of dj.sturbancecoming
from the rear of the channel is considered. The analysis 3.s
restricted tn channels of slowly varying cross section 80 that a
quasi cme-dimensional treatment can be used. This treatamnt is
based on Riemennrs treatment (referenae 1) of plane waves superposed
on a hcmogenoous medium. A part of Riomenn’s paper will he
paraphrased herein to put his results into e form suitable for
extensj.o~to channel-flow problems.

The author is very grateful for the helpful,discussion of
these problems with Mr, A, Kahane and Mr. Lester Lees.

—

—

u



3

RIEMANN 1S TREA’RKE!W!FOF TRE PROPAGATIW OF FINITE PLANE

DISTURBANCES IN A EOMOGFNEOUS MEDIUM

In 1859, Riemenn publisheflhis great paper (reference 1) on
the propagation of @ane aarial.m.ves of finite amplitude. Starting
with the one-dtiensional equatione of motion and continuity and
asehming isentropic flow, he shows (mong other things) *at:
(1) a disturbance initially confined to a finite region will spread
out Into waves propagated in both directions f ram the murce, and
(2) that ccxnprt3Ssionfront3 in the propagate~ waves till steepen
Indefinitev, aniltill eventually fomn a compression shock.

Riemenn starts with the one-dimensional equations of motion
end continuity (assuming isentropic flow of a perfect gas):

end

(1)

(2)

(Symbols are defined in appendix A.)

He then multi~lies equation (~) by $; and adds to equathn (1)

o?)tatning

(3)

Assuwkm all.chances to be isentropic and introducing y = 1.4
(the va~ue for ro;m-temperature

dlogp=

air) yielde

G+%==e
(4)

Hence, adlogp=d~. Using this ‘resultpermits equation (3)
to be written

(5)
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It iS
and Q=u

With these

and
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convenient to introduce the symbols P = u + 5a
- ~a which occur frequently in these equations.

SWhO18 u+a=~and u-a==~.
5 5

The equations(5) can be written

bp+~+2~ap
z 5 Tin*

$$+2mQ g!@
5

(6)

.—
=

.-” —

.-

If the disturbances are not too large (~u I <a) these
equatians represent disturbances mowing @ the ax directions,

(7)
.—

respectively, since for this case ->0 end y<o,
.

If, for example, there are no disturbances h a given region
moving in the -x directfm, then Q = Const. = -5as where as

is the velocity of sound in air at rest in this re~ion. In this
caee, it can be seen from equation (7) that Q remains constant,

since a
?

= o, even in the presenee-of a P wave. Thus, waves
x

woting in one direction in a hOmOgeneOuS medium do not reflect
waves moving in the opposite direction.

In the analysis of channel flow, finite pulses oomlng from
the rear of the ch~el will be assumed. The term ‘tflnitepulse’l
Is used to denote a finite disturbed region tounded on both sides
by undisturbed fluid (or equilj.brimuflow in a channel-flow
problem). A fjnite pulse will consist of at least one phase whore
the.pressure drops, which will be called the expansion phase, and
at ’leastone compression phass where the pre&re”rj.ses wi~ tjme-

It canbe shorn that the integral~’P dJC (orc/’ Q ~)-j which

will be called the pulse area, taken over the wholo of a finite
pulse does not change with tjme when pulses moving in only one
direction are present. ~tegrating equation (6) with respect ta x
gives

-L

8“

.
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Since P vanishes at both en

J

of the ~ul.ee,tie second integral
. is O for Q = Const. and P ax (or similarly />Q dx) is

constant h timez.

.
Rlemenn uses eqwtions (6) and (7) to show that compression

fronts in these waves steepen to form shooks while expsnshn waves
flatten out indefinitely. This informatim can be obtained for
the case where only waves moving in one directim are present by
a different approach which will be raadily extended to the problems
consideretllater by ex.mtii.ngequation (7). Differentiating
equaticm (7) with respect to x, assuming P = C~st., and intro-

, auc~ ~=& ad ‘thereis obtained

~+

at

For the case where only Q

2P+3Q&=.3g
5 ax 5

(8)
#

disturbances exe present the quantity C
my be understood phyeiceillyas twicci the veloci’qgradient in &

disturbance since u . ~.

Consider now that the point under observation moves with the

Z d.enotothe rato of change of em propagation velocity and let ~t

for this point. Now
.

~= ac+~w
a.% z at%

where ~ is the local propagation velocity * Henoe,

1A more general form of this theorem can be obtained as follows:
let f(P) be an arbitrary well-behaved function of P. Multiply

equaticm (6) by u end integrate as before. It follows

‘at & /’f(P)dx~O where the”integration isoverthewholeot

a finite pulse. Thus, the mass, impulse or energy carried by a
pulse will also remain c~stant end any of these quantities could
be uses. The quantity J Pdx is convenient since P appears

directly in the equatias.

.

.
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equation (8) can be written

or

where E is the value of c at t = O. Now, if ? is positive, c
decreases toward zero .ssthe wave is propagated. If ~ is

negative, Ic I increases ind~finitely,becomin~ infinite at t = - $.

For the case where only Q waves are present in the region under
con~ideration, positive and negative values of 6 cti be identified
from the fundamental equations as expansion end compression waves,
respectively. Thus, comprossian waves steepen to form shocks @nd
rere,factionwaves flattsn out indefinitely.

Gl!N13RALPIJINOF THE CHANNEL-FLOW ANALYSIS

The general plan of this treatment can best be explainedby
considering the central problem, the stability of smooth deceleration
through th~ speed of sound, from a physical ”pointof view. Jn such
a fl.owjdtsturbancos starting in the rear cf the channel will be
trapped in the sonic region. The Tresence of this disturbance trap
constitutes a distinct difference between this flow and smooth flows
known to be stable.

Two typos of procosses which govern the behavior of pulses in
the sonic region are ‘consideredseparately in parts I end II of
this paper. First, there are isentropic processes similar to the
propagation of waves of finits amplitude ccmsidered by Riennnn.
Shocks form In the.che.nnelY1OW as in Rie-’s case. If these
shock waves are assumed to be of very small int&sity, it is shown
In part I that a pulse approaches a stationary state. Thus, the
amplitude, shape, end ~osithn of a p}lse approach tiss,ymptotical~
whnt will be called a trq?ped pulse. The motian of we shock
waves in these trapped pulees is considered more eccuratoly in
‘partII, ,andit is found that the shock
to be consumed or ‘m grow, depending cm
the intensity of the shocks involved is
consumption process is much slowm’ than

moves ond causes the pulse
its sign. In.cases where
not too large, the
the tiapping process. In
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these cases, it is possible to obtain a fairly complete history-of
the behavior of a pulse without considering the interaction of
these two processes. Thus, in part I, the rapid trapping process
is considered acd the S1OW consumption of the pulse by shocks is
neglected. In part II, the consumption of fully trapped pulses
by shock waves ie discussed.

A similar analysis is msde for the case where a shock wave
forms part & the init~,alchannel flow. In this case, disturbances
frcmthe rear serve to move the shock to a new position and,if
changes in shock strength are neglected, it is found that the
pulses in this case are also trapped as slmck d~s~lacements (shown
in~srt I). Here again, the slowe~ effects on this skook displace-
ment are d~scusseciin part IT, the changes in shock strength being
included. In this way, the stability of shock waves in channel
flows is studied, *

The boundary-layer effects are ne@ected entirely in this
paper. It i~ well known, however, that such effects are important
in channel flows involving shock waves. The results obtained can
therefore, at best, be only qualitatively s~mil-arto experimental
results. Perhaps it will be possible eventually to add boundary-
layer effects for cases ldmra they a-e important, thus following
a procedure frequently used in gas dynmcs,

It should be pointed out that %&o.matjcn of the type sought
in this analysis cannot be found by introducing the acoustic
approximation; that is, that the iiisturbancevelocities are negligible
compared with the propagation velocity. In the sonic region of a
channel, the propagation velocity of an upstreamaoving pulse is
close to zero. On the other hand, If the acoustic approximation is
introduced, the disturbance velocities tend to become infinite in
the sonic region (reference 2), Thus, it is clear that the acoustlo
approximation cannot be used to study the development of upstre~
moving pulses in the sonjc regicn.

I- THE TRAPPINGOF HJLSES AND THE FORMATION OF EHOCKS

INADECELERJTINGTRANSO1/IC CKANNEL FLOW

The Propagation of Finite Plane

Superposed on a Channel

.
General equations.-~ analysis similar——

applied to t= case where plane disturbances

.

Disturbances

Flow

to Riemann~s can be
are superposed on a
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one-dirLensionalflow field. (A one-dimensionalflow field 1s one v.
where the variations in velocity, density, etc., perpendicular to —
the flow direction, are negligible ccmpared with those h the flow
direction.) Consider the field offloW in a straight channel of ●.—
slowly varying cross section So The equation of continuity beccrm ~.

‘w+&+ ud’:s=o (9)

.

-.

—

Multiplying equation (9) by ~a and adding to equation (1) yields —

—

J-(u t 5a) + (u t a)~(u ‘f5a) ~ uad ~ s = O
at

(10)

An equilibrium (steady) flow in the channel with qu.mtities denoted
by subscrtnt o will be ausuned. Z&imd quantities will denote
deDar~jUreSfron this equ~librium. Thus,

u= “0 + u’
1./

a = a. + a’ J
By s~lbstitutionof equations (ll)”in equation (10)~

t (u’a’ + u’ao + a’u)Q-J& . “o

.L -

—

.

(U)

,...-

there is obtained -...-

..-m

.—

—:

. .

.
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4 Note that,where
no

MO=-,
%

.

y = &%2 . 1)%

E&La

Dropping the second end third tame of equdtlon (12’),which cancel
each other (equation (10) for steady-fl~w cese), Gives

.

.

If the quantities P and Q are introrluce~,where now
d p = u’ + ~a’ ~d Q = u! - 5a1j fie eq~ti~~ (13) baco,~d

.

and

(,14)

(U)

.
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Reflections in a velocity field.- The equations (14) and (15) ~ -
indicate that disturbances will bo propagated upstream and do-
stream In the channel flow as was the case in Riemann’s problem.
Because of the last two terms in these equations, however, a pulse
moving in one direction will reflect disturbances moving in the

.

other direction, Perhaps it would be possible to solve these
equations numerically for any particular case by the method of
characteristics. It will, however, serve the general purposes of
this paper better to derive general approximations rather than more
accurate numerical results for specific cases. —.-..

In part I of this treatment, the reflections will be neglected;

—

but before this assumption is introduced, an evaluation of the order
of magnitude of these-reflections will be made to provide an
indication of the error thus introduced.

First, consider a pulse moving upstream into an equilibritlm
velocity field; that is, containing no downstream-moving disturbances.

-.

Consider a point moving with the downstream velocity of propagation
.

w + ~ The rate of change of P at thisu+a=uo+ao+——. c
observation Doint wil~ be denoted b.v

~+~~. ‘The rate ofgrawthof”P

pulse-is thus given by the sum of the

duo

[
-~ (l- Mo) -yam- + (Mo2-

~hi~dt~se~%~tt~rosses the Q

first two terms of equation (14); ●

M

In order to obtain a stiple estimate of the reflections produced In
the sonio region of a channel, it will be convenient to introdtice
the following approximations in the right-hand side of this equation;
(1) PQ2is negligible compared with Q, (2) M. + 1 = 2M0 = 2,

(3) ~
is negligible compared with ~. Thus, there is obtained

. .

.

.
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Now, integrating over the whole of an upstream moving guise givesd
for the value of P at the tear (which ‘tillbe the mximum value
of P if Q is all of one sign throughout the pulse)

.

●

P 2
rear = ~ J’

(1 ‘Mo)Qd~dt

‘?ulse

Since ‘We propagation velociiy is close to 2ao, dt = ~ (for th3
o

noint under observation), and apyroxiwtely

3? 2

J

(1 - .MO)Q
rear = ~ — zo—

% ulse

For example, for a square pulse - that ia, a -pulsefar which Q = Const.
from a point where the steady velocity is U. to a point where it
is U. + A%, there is obtained

P =Q ‘+ $(1 - Mo)av
rear o

.

where (1 - l~)av means an average over the re@on of the pulse.

The relative magnitudes of T and Q in this problem can,be
illustrated by a numerical example. If (1 -@av=O.l

Au.
and —-— = 0.1, then Prea,r= - ~.

o

It thus apmars tlnatfor short upstream-moving pulses in tie
sonic reglcm, it will he possible to neglect P in comparison
with Q in equat,ion(15) if there are no downstream-novtig
disturbances mresent initially.

C~rL~ervatfonof ml-se area.- If reflections are neglected, the
propagation of an UnStr~a:i-~OVing-Or Q pulse cen be studied with
the aid o? equation (15) alone. Since this tz-aatmentis primarily
concerned with the sonic region of ch~aels, .it will te possible
to obta~n si:!mlea~raxinat.ions ky neglecting the fo~th term of
equa+ion (15), which contain~ the factor .(M02- 1), in comparison

. with the +,hirdtern. lllininatingthis term, replacing 1 + M. by 2
in the third term, and neglecttig P, compared with Q, gives
for equatinn (15)
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—

(16) .

From Riemann’s equations, it was ehown that the quantity ~*’Q dx ‘

(WJ-se area) is ccmtant in the isentropic propagation of pulses
in a homogeneous gas. By the use of the approxhate equation (3.6),
it can easily be shown that the same rule is armroxlmately true for
propagation ‘in

as can readily
close to 1) .-

a flov field. Equation (16) c=-also be ~ittek ...-

1-. ..
be verifiedby differentiatkm

=0 (17)
-=

(for values of a

. ..-
.-

Integrating this equation tiithrespect to x over the range Xa

to Xb @vf3~
—

. .....

kj’-’.~+ [Q(;b- q-l:=, ’18) * -

If the integration IS taken over the whole,of a
second term vanishes and the pulse area ,] Qti

the order of accuracy of equation (16). It can
taking the point Xa ahead of the pulse where

that, at an arbitrary point ~, Q milse area

the rate

H )-l
‘-Q~~+uo-ao ’- .

.- xb

.

finite pulse, the
remalm constant to

also be seen by
Q = O in equation (18)

flows through at
.-

Iiican be shown that, as long as cmil.yupstream-moving disturbances
are’present, this rule - conservation of pulkiearea In upstream-
moving pulses - is not affected by the presence of shocks (if doivnstream”
‘notingdisturbances produced by the shocks are neglected). For the
case where the shock is not part of the initial equi.’libriumflow (that
is where it develope in an upstream-moving disturbance) and P = 0,
it is shown in appendix B tequation [Bk))that the velocity U of
propagation of a shock wave is

U=uo-ao
‘$(Q’+%)

(19) .

.-
. —

.—
,.
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where values of’ ‘Q before ~da?ter the shock are denoteaby

~ ma ~, resvectivd.y.

If now it canbe shown that the pulse area entering the shock
per unit tine is equal to that leaving the shock, the pulse
conservation rule will be setisfied. The @se area entering or
leaving the shock is the
stationary point and the
it must be shown that

sum of the pulse ‘mea passing thro~ a
pulse area overtaken by the shock; thus,

If the expression (19) is substituted for U, this equation
is identically satisfied, and thus, this extension of ‘therule is
established.

Another similar case which will be of interest h connection
‘with later considerations is that for an u~strea-moving pulse of
small amplitude interacting with a shock that is part of the initial ,
equilibrium flow. This case is illnstratod in figure 1. It is
necessary to assume that the shock intensity is low (equilibrimn-sbck

. Mach number close to 1) to get a simple result. It is also necessary
to neglect the variations with x of the local equilibrium velocities
and velocities of soundy in comparison with the disturbance velocities.
These chenges, which are tiueto +he changing channel area, are
responsible for the eta’ility of position of the shock wave. Thus,
in other wor~s, the etfects due to the stability of the shock wave
are neglected ae conparea with the disturbance effects. The
circumstances mder which this assumption is permissible will become
clearer from the reeults of part 11. If the stability of a normal
chock is neglected, the velocity with which it moves unaer the
influence of a small umstream-mvhg disturlmnce is calculated in
apmendix,B (equation (B9)) to be Eimlly

u= $~1 + Q~ (21)”

In addition to the contributions to the pulse area which were
present in the previous problem, pulse area is contributedby the
fact that the shock is merely out of position. The equation which
must now le satisfied to demonstrate cmservation of pulse area is
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—

( Q1
UQl - Q1; T+uIO

+ alo)+”2u&- ~o)

where the subscripts

before and after the
mately (see appendix

and

(22)

10 And 20 denote equilibrium conditions

shock, respectively. Noting that approxi-
B)

’10-%0—. +$
%.-%O=

.
b.

. —_—-—.-

—
-.=_—

- -—

—

-.———
—

-%

for Mach numbers close to 1 and introducing the shock velocity
(equation (21)). satisfies equation (22) identically.. Thus, the

.

rule of’conservation of yul.searea ampears to be a useful approxi-
mation k-ithconsiderable generality,

-—

The mulse shame.- The shape of a pulse (that
function of x) advancing upstream tn a velocity
absence of downstream-moving disturbances, can be

aQ=6.field by considering its x derivative ~.

this quantity with the canbe foundby differentiating equation (16)-
with respect to x. ..

J-
.

is, Qaea
field, in the
studied in a flow —

The variation of

—

For the case where

that Is ~2uo . ~

F’
simply from this differential equation. Ccwwhler tie point under

the equilibrium velocity gradient is constant,

tie behavior of the pulse shape canke studied

.

.
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observation to move with the wave, that is, move with the local

propagation veloctty. ~t ~ be t~ rate of ch~e of ~ vhen

the molnt under observathnmoves with the propagation velocity;
then the ptiecddingequation %ecomes

&=&+
at at (‘o - % ‘; ’)k=-x!+’%)

(23)

The”varial?lesin equati& (23) can be separated. If the
d%

~imensionless parameters E = “~ ana T = ~ t are int~oauced,

-G d~
equation (23) can be integrated for ~

ax
constant to give

(24)

where ~ is the dkiiensionlessslope of the wave at the time t = O.
Positive values of T in equeticm (24) @.11 represent accelerating

equilibrium-veloci~ fields
(m )
‘%>0 and negative values of T

will represent decelerattig fi’elds. Also, in accelerating fields,
positive values of E will represent acpansionc and negative
values will represent compressions, end tie opposite is true for
decolerat@ fialds: ~quation (24) 1s plotted in figure 2 for
various values of E.

It canbe seen from this figure that the results ae considerably
different from Riemann’s. Thus, in an accsler~tingjfield, compression
waves must have a certain initial stee~ess, lTJ<-1, or they will
flatten out In time. W the other hand, in a decelerating field,
e~ansicn waves, instead of flattening out (as occms inl?iemann’s
case), epmoach e slope given by 1!= -1. It showldbe noted

d%that E = -1 corresponds to a total,velocity gradient ~ = - —.
& dx.

%ravued” nulses.- The apprcxinat~ relations which have been
develo’md In ~,heprecedin~ ~ections can be uses to show that a
mu.lse,mving upstrea~ jn a uniformly decelerating flow a~roaches
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a stationary state. Tlnu3,the pulsn area remains constant, the
expansion phases approach the slope given by E = -1, and the
compression phases become shocks. AsIthese devel.opmen+stake
place, the w.zlseadvanced to a position whero the prosa ation
velocities of the shocks au~roach ze~,o. fWhen,,thisposi ion is ‘
roached the pulse will be said to be trapped.. It should be pointed
out,that the trapned pulse is an idealization and would not exist
in an exact tre&tment.’ The introduction of this cmcept makes
it poss~ble to divide the history of a milse jnto two periods
which cm be considerefleeperately. The trappin~ of compression
and exnenston pulses in a decelerating transonic’channel flow is
shown schenaticall.yin fj.gwre3.

The asymtoti,c result for expansion phases of trapped pulses
E= -1 is con~ared in f’i,gure4 with the exact accelerating
equilibrium channel flow. It can be seen from this fi~e that if
all the velocities involved are clobe to the local speed of sound,
the expansion phaees are very close to tie accelerating steady flow.
It seeme reasonable to Wfer from figure 4 that the differences
between the two curves are due to the approximations introduced In
deriving equation (16) from the exact equations (14) and (15)
(neglect of reflecttcns anti Moe - 1 terms). Tn other words, it

seems reasonable to infer that an exact calculation from equationi (14)
and (15) would yield the exact accelerating stea~y flow. This
inference will.be adopted in part 11 cnd the exact accelerating fla?
will be used in @ace of the E = -1 result in cal.culatlonsof the
shock velocities.

It will be valuable to calculate the order of m6gnitudo of the
times in which the first-or~er trapuing processes take place. These
times will be compared with times irIwhich the sluwcr pmeasoes of
part II take @ace. For example, the leading edge of an expansion
wave propagates upstream with the velocity V. - ao. If x is the

distance of ~is leading edge from the sonic point of a channel,
tlhenh a uniformly decelerating field (Per M. close to 1)

6 dUo
‘o - a. —x. The equatimfor the approach of thg leading= ~ ~.x
edge to h% ~onic point is thus,

dX 6.‘“UO ~-—
G’?) (IX

~=.

.M
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———
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—
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The relaxation the for the approach.is therefore 1.
6 duo ●

()
--—
5dx
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A rela=tion time for the slope of an expansion wave to approach
its equilibrium slope can similarlybe found,from equat~n, (23).

equilibrium value c = -4 +,If the slope is close to the
.

equation (23)Cm be mitt=

.
The relaxation time for this 1

process is then ... . or one half

()g- =UQ
5=

as large as that for the approach of the leading edge to the sonic
point. It is clear frcm figure 2 that the formation of shocks from

‘compression waves Is a faster -processend a shock is formed in a
finite the.

Application to ths Formation of aI?ormal Shock

●

in a de Laval Nozzle

. The theory just developed can be ap@ied to trace the formation
of shock waves in a de ljavalnozzle. Consider the conver@ng-
diverging nozzle shown schematically in figure 7. Suppose the back
Dresmre to be a’d$ustedto such a value that the local speed of
sound is reached at the throat.but not exceeded. The form of
velocity distribution that would be obtained Is also shown schemati-
cally in figure 5. The small curved region near the local speed of
sound in the velocity curve which would be obtained in a practical
case has been neglected to simnlify the argument.

It is lmown from @ny experimental results that if the back
pressure is lcm-eredfurther, a normal shock till form in the nozzle.
The fomation of this shock can be readily described by use of the
foregoing theory if the velocity at the end of the nozzle is
sufficiently close to the speed of sound. It willbe assumed that
the back pressure will be lowered continuously for a time end then
held constant. (It Will
is not lowered enough to
nozzle.) While the back
at the end,of the nozzle

. the velocity disturbance

also be assumed that-the back pressure
produoe supersonic flow at the end.of the
pressure is being lowered, the velocity
will increase.
created.can be

The space-derivative of
found from eguation (16)
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if downstream-moving disturbances are neglected. Solving this

equation for al_J. ~ QQ yields
3X 2dx

. .

.
-,--

.

(25)

It canbe seen from equation (25) that some time before the expansion

‘tws’ E
will.become negative. This result will.occur when

6ur5+ *<o
5 ax

since the denominators in equation (2j) are negati$vefor subc30nic
v410citter3.

A negative value of au ‘— meane that a compression wave has hen
ax

produced in the nrocess of decreaeln~ ‘Ae back pressure to a new
steady value. (It should be remarked that no such ccmqnwsaion waves
are started in the absence of a decelerating velocity field.) This
cmnmession wave will travel uDstream and.will steeFen as hae been
shown previously (equation (2?)) to form a compression shock. The
compression shock and the wedge-eha.yed.erea ahead of it will grow
by the eddition of expansion pulse area coming froi~the rear of the
nozzle (pulse area is continually contributed since Q ~ O nt the
rear)s Tho shock will grow until its Iptensity and its dissipation
are large enou$h to reach a condition where the nozzle flow is
again at equi.libriuu.

The calculattms on which figure 5 M based are given in
appendix C, The leading phase which originated while the nozzle
back preesure wa~ falling canbe calculated from equation (23) and
the known yropagaticn velocity of its leading ed.$e. The steady
phase which originates after the nozzle baok pressure has again
become steady canbe foundby i~tegrating equation (16), use
being made of the fact that ~ = O. for this phase. For the

case comidered, an infinite decelerating velocttygradient appears
at the point where the velocity first reaches the local speed of
sound, The shock that follows ia calculated step by step from
equation (19). The calculations used in plotting figure 5 are thus

—

—.

—.—.—.

.

--

.

.
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* only e first approximation to the shock motion. A more accurate
shock velocity calculation (by the methodflof part II) would show
the shock to settle at an equilibria position.

.

If the unsteady aspect of a channel-flow problem is considered,
it is possible to see how shocks arise in the tiansonic flow. It
is quite possible that an analysis of this kind could be extended
to two or three dimensions and to the flow over obstacles and that
if these extensions were made, the problem of the formation of
normal shocks in these more complicated cases could be greatly
clarified.

II - THE MOTICN AND STABILITY OF uE?XXKWAVES

IN A CHiJ?TH3LFl13W

Preliminary Considerations

The trapping of pulses and the formation of shock waves in
decelerating channel flows have been considered in part I. h the
case of the central problem, the stability of smootk transonic

● deceleration, these calculations ind~.cetethat a trapped pulse
converts a mart of the channel flow to the accelerating steady flow.
The trapped pulses always involve shock waves and if the approxi-,

& mations of appenfltxB are used for the shock velocity and if down-
stream waves created by the shocks are neglected, it is found that
the entire pulse becomes stat~onary in the sonic region of the
channel.

The occurrence of these trapped pLiLS6?S in tr~sorlic decelerating
channel flow means that, to the order of accuracy of these calculations,
this flow has a kind of neutral stability to pulses coming from the
rear of the channel, Therefore, it will be necessary to make more
accurate shock-velocity calculations before it can be decided whether
this flow is stable or unstable. In this part of the paper, the
motion of shock waves will be considered more accurately.

It will be assumed that conditions at the ends of the chamnel
are steady; that is, the shock veloctty will be calculated fcr the
case where the channel flow is out of equilibrium (for example, whee
a channel shock has been displaced by a pulse) but where no new
disturbances are originating at the end of the channel. Thus,
disturbances will be treated by the methods of part I and these
more cumbersome calculations will be used to solve stability problem

. which cannot be solved by the methods of part I.
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The flow on the upstream side of the shock will not be related
in any way to the shock position or motion because any disturbances
cr~ated by the shock will not move.upqtrwxn as rapidly as the shock
does. It is therefore possible to calculate the state of the air
at all points ,aheadof the shock wave before the shock n,otionis
d.etormined. For all the applications of the shock-velocity calculations
that are contemplated in this paper, an equilibrium flow (either the
original equilibrium flow or the alternate one inferred to be produced -
by a trapped pulme) will be essumed upstream of the shock wave.

In steady flo?r,once the conditions aheed of the shock are
Imovm, it is poosible to specify immediately from the Rankine-Hugoniot
relations the conditions behind the shock, In unsteady flow, however,
since the shock velocity adds another unknown to the problem, It will
be necessary to have another relation h addition to +/heRankine-Hugoniot
relations before th,eshock kelocity and the cond.itio’nsbehind the
shock can le specified. Since the conditions upstream from the shoc”k
wave are already fully determined, this additional information will
be a relation between Fhe variables of condition downstream from the
shock. The nature of this relation cm be brought out most .simply
by considering a particular case, namely, the case of a chwel.
discharging into the ntzosphere. It will be accurate enou@ to say
that dfsch~~ing fnto the const~~-ureesure atmosphere ia equivalent
to a constant nressurc boundar~ condition at the end of the nozzle.
If a P ‘disturbance ~aovesdownstream inthe channel; it will of ““
course, involve pressuro changes and, when the end of the nozzle is
reached, thifldisturbance will be reflected as an uystream-moving
disttibance. Thus, it will le possible for a given P disturbance
to calculate the Q disturbance at the end of the nozzle. Now,
apylying the isentmopic ~ve propagation equations permits the
extension of this infcmmat.ionto regions upstream. Thus, in
general, if the downstream-moving disturbances at a point are known
and the bounda~ conditions at the end of a chmmel are Spmlfied,
it woul.dbe possible to calculate the upstream-moving disturbances
at the same point in the channel. More accurately stated, the
downstream-movin~ disturbances for a previous interval must be known
in order to calculate the upstream-moving disturbances.

These problems could probably be treated accurately by the
method of characteristics and calculations of this kind wotid certainly
be desirable. However, for the exploratory purposes of this ya.per,
an approximation will be introduced to make it possible to reduce
these calculations to a closed form. Thus, the reflection conditim
will be appljed Waedlately behind the shock instead of at the end
of the chmnel, For e~mple, in treating the constant-pressure end
condition, the pressure immot?iatel.ybehind,the shock will,be assumed
to be the subsonic equilibrium pressure appropriate to the shock
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position. The reflection condition, In combination with the.
conservation laws, may then be used to ~btain an algebraic expression
for the shock velocities. This procedure introduces the following

. errors: First, the ch=nges in the strength of the waves in moving
downstream to the channel end and in mov’ingupstream to the shock
are neglected, Second, the time required for a wave to move from
the shock to the-channel end.and for the reflection to move back
to the shock has been neglected. In cases whe~e the channel
following the shock is not too long, this effect will not be serious
for shock Mach nua%ers close to 1, since the shock velocities
found are snail compared with the local propagation velocities.

Reflection Conditions

The analysis will be made for three types of reflection
conditions: constant velocity at the channel end, no reflections}
anticonstant pressure. These cases will provide a comiderable
variety of reflections; thus a method is provided for estimating
the sl~ificance of reflections in these yoblems and.,hence, the
signif’icenceof the two types of errors Just mentioned, A further
dt~cussion of these errors will be given after the shock-velocity
calculations have been presented,

4

Ccnstant-velocity channel exit.- Constant velocity at the——.—
channel exit could be approached practically by ezmmging a channel

. to discharge into a machine which takes in a constant volume per
unit the, If, in such a setup, a disturbance moves down the channel
frcm the shock wave, it will be reflected frcnnthe end of the chanel
in much ths same way as a sound wave is reflected from a clesed
organ-piye end. The velocity will thus remain constant at the channel
end and.,In this case, u’ = O at the end of the channel and P = -Q
at that point. As discussed previously, this boundary condition will
actually be applied immediately behind the shock,

The shock relation is introduced now in the form

where vi and
.

upstroaw of the

.

al are the velocity

shock in coordj.nates

zh2
(26)

g%.
2

and velocity of sound immediably

fixed with respect to.the shock
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wave and T2 and q ere the”velocity and velocity of sound

imme?.latelyfollowing the chock ti thase coordinates. The notation
to be uoed fn connection with problems of the motion of shock waves
fe illustrated in fi~e 6. Feturnj.ngto a coordinate syetem fixed
with respect to th9 channel yields for equation (26)

(27)

The constant-velocity reflection condition yielil.s+Ae information

“2 ‘0 ‘d hence %! = %3” U~ing this information end eliminating

~ between the equation (27) gives the following solution for the

shock velocity,

It should he pointed

----

/’(‘%.-+ 3*
) 1

‘~. 3cJul,,~,,,+ ~5as2 (28)-.,
s ~ Ss

out that the plus st~~ corresponds to the

.

——

—

—,- —

.

expansion ‘“shock”which violates the secmd law
and, therefore, the minus sign must be used.

Nonreflectiicha~el exit.- The condition———
reflected frcm the~ar of ~channel could bo
case where the region of the channel containing

Of”thermodynelnics

where no waves are
appro~chod In the
the shock wave

under consideration is followed hy a sonic throat and a supersonic
region. In this case,

—.
the only reflections present would be those

produced by the variation in channel area between the shock and
the throat. If all.the Mach numbers are olose to unity, the
variation in cha~el area wo~fl b’esmall and, therefore, the reflections
should be small.

The absence of reflections means that no upstream-moving
disturbance will exist behind the ~hock in the absence of external
disturbances, The reflection condition in this case is then Q! = 0.

this relaticm immediately behind the shock gives

- 5a’2 = 0, Using this information in equations (27) makes

posetble to elimina+,e U’2 and a’2 and to obtain

#+ AU~+B@+m+D=O (29)

.
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.

.

●

Here again, it is possible to solve for U if U1
~

and. az~ are

..
knom. Of,the four roots of equation (29), *O are $IU%@w ~d
one corres~onds to the expansion “shock” so that only one has

physical signifIcance.

Constant-uressure channel exit.- The third boundary condition
which will be considered is the~a=e of constant-pressure channel
exitQ T’hlscondition could ‘beapproached in a channel that
discharges into the atmosphere. Transferring this boundary condition
fmm the channel end to the shock gosition gives the information
that the mressure behin~ the shock is the same as thepressure which
would exist at that point in the steady flow. The constant-pressu.m
boundary condition can thus be stited as P2 = P2xC” Using tie

. b
shock relation

P+U,.U}2. L
P~ 6

%2

(30)

. gives en imuediate solution for the shock velocity.

.
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The Stability of Smooth Deoeleratlon through .

the Speed of Sound —

In the case of a channel flow involving emooth deceleration ~
through the speed of sound, it was found in part I that a pulse
coming from the rear of the channel was trapped In the sonic
region of the channel. This result means that, to the order of
accuracy of these calculations, the flow was neutrally stable to
pulses coming from the rear and that more accurate calculations
are needed to decide whether this flow is stable or unstable,

Two ki@s of approximations were made in deriving the trapped-
pulse result. First, the reflections produce~ by isentropic waves
and,the temns containing M02 - 1 as a factor in equations (14)
end (17) were neglected. The’expqnsion waves were found to replace
a uart of the original decelerating equilibriwn flow with a flow
close to the equilibrium accelerating flow which is also possible
for this channel. (See fig. 4.) It was then inferred that exact
calculations would yield the exact accelerating equilibrium flow.
If this inference is correct, the exsct final.state of an expansion
wave hab beeh obtained by this method so that the approximations
introduced in the calculations of the e~sian waves will have no
effect on the final results.

Second, rou’@ approximations to the shock velooi.tydeveloped
in appendix B were used and, with thse approximations, it was
found..,thtthe shock neither consumed the pulse nor made it grow.
Hence, any change’in the shock velocity from theee ipproximhte
values would. lead to consumpticm or growth of the tiappdd pulse8
and, thus, the more accurate shock-velocity fornulas Just derived’
can be use~ to detezmine the stability of smooth deceleration
through the speed of sound.

For the case where the equilibrium flow is smooth deceleration
thro~h thespe~d of sound, the quantities appearing in eq~lations(28)
through (30) can madlly be evaluatefiand the shock velocity calculated.
It’will be seen from these equations that the shmk veloc!ty depends
only on local conditions at the’shock position. These local
condltlons, of course, are all functions of a sfngle parameter and
the parameter used to present these results Is the Mach number
Immediately shead of the shock.

Results found for the three reflection conditions are plotted
in ffgure 7. It will be seen that the shock velocity is always
negative; that is, the shock always moves upstrem. .Thus, in the
caee of the trapped ex~ansion milse (fig. 3), the shock will move

s.
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. umstream an?teventually will consume the pulse. Smooth decelerattcn
throug~ the sueed of,sound is therefore stable to exoansion,pulses
comfng from the rear. Cn the other hand, in the case of the tranped

● coqweamion -mlse, the shock wave will again move upstream, andin
this case, the pulse %111 continuously grow (at least as long as
the shock wave is in the converging part of the channel). Thus,
smoolh deceleration through the speed of sound is unstable to
colmweosion -pulsesconing from the rear.

Stabili~ of Shock Position in Channel Flows

The previous discussion shows that, in stable channel flows,
deceleration through the syeed of sound will be ,accomplishedin.a
shock waves. Consider now a converging-diverging channel: There
are, in general, two pcsslble shock positions which ~~11 yield
equilibrium flows; that is, the shock can be either in the con-
verging or diverging p’artof the channel. Experimentally, the
shock is found to be stable in the diverging pert of the channel
and unstable in the converging part of the channel. It willbe
Interesting to apply the formulas Just developed to examine this
problem theoretically.

A more precise statement of the prohlem which wtllbe studied
●

is as follows: Consider a shock wave in a channel flow. Consider
that a small pulse has displaced the shock wave by a short

. distanc~ Since only small disturbances will be considered, it
will be convenient to use a linearized form of the shock-velocity
equations. If now, the quantities u, a, et cetera me eqsnded in
Taylor series h ~ about the equilibrium shock position, only
the first-power terms should bs rotzdned to obtain a linearized
equation. Furthermorej since the d.istur?xancesare small, the shock
velocity can be assumed to be small compared wfth the local velocities
or veloci+,iesof sound and higher powers of the shock velocity cen
be neglected. Performing these operations permits equationa (28)
through (~(l)to he writt~n in tie foz?n

(31)

where ~~ is identical witin U and the relaxation time T for the
dt

various reflection conditior.sis as follows:
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Conetant velocity:
———

--

No reflections:

dul.,
~

‘r=
: %.(%:- ‘)(%O+‘%2)

Constant pressure:

(32) m

(33)

—

d.ll-

(34)
_—

v

dul
valueS Of T ~ are plo~ted in figure 8 against the equilibrium

k
Mach nmnber ahead of the shock. Figure 8 shows that T % is.-elways

dx
positive and the shock position is therefore stable (positive T)

..

dul du
3 is positive and unstable when ~ is negative. The

.—
when

dx

shock position is thus stable in diverging channels and unstable in
converging channels in agreement with experiment~
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G3!NERALDISCUSSION

Discussion of Simplifying Assumptions

It should be pointed out again that the beet way to indicate
the effects of the simplifying assum~tions introduced in this @per
would be to repeat sa~e of the calculations made herein by the
method of characteristics and to ccmvare the results obtained with
those obtained in this paner. Since such calculations are not yet
available, however, it wouldbe desirable to see what information
can be obtained from the results themselves h order to define their
range of validity. This discussion is given with the central
mroblem - statility of smooth transonic deceleration - in mind, but
it will be clear that,similar conclusions couldbe reached for cases
where the equilibrium flow involves a shock.

The agsu’mptionsc?fnart I led to the tra~ped,-ynil.ssresult and
to the inference that exnansion waves renlace ‘theoriginal uniformly
decelerating flow with the steady accelerating flow appropriate to
the channel. These assunntions have already been discussed in the
section on ‘he stability of swoth deceleration through the speed
of sound, and it.has been noin+e~ out that if this inference is

. adopted, errors due to ~g assu~nt,ions.introduced to facilitate the
calculations of isentromic wave mronagation in pert I are eliminated.
The shock velocity formlas of anpendix B are, howeverj only rough

. approxi,nations.

In part II, more accurate formulas for the velocity of the
shook were f’ound,which indicated that the trapped expansion pulses
are consumed by the shock and that the trapped compression pulses
continually grow as a result of the shock motion. The histery of a
pulse has thus been divided Into two intervals. During the first
interval, the consumption of tbe ptise by the shock hae been neglected.
During the second interval, it has been assumed.that the pulse is
fully trapaeci. There will be, of course, en intermediate interval
d~ing which the rates of the two processes are comparable. If the
order of magnitude of the times in which a pulse is consumed by the
shock is much larger than the times that a pulse requires to approah
tie trapned state, the intermediate interv~ will not be vsry ~portant.
The hportance of this intermediate interval can therefore be clarified
by calculating the fraction of the pulse consuhedby the shock motion
in the the required for the trapping processes which Is of the or~r

1
of —= Calculations of this kind are presented b figwe 90

.

.
0
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It can be concluded frcm this figure that the intermediate interval
does not play an,important role so long as the pulse erea of the
initial pulse is not large enough so that high Mach number shocks
are involved.

A third group of errors was introduced in pert II by applying
the reflection conditions after the shock instead of at the end.of
the channel. The sigaificmnce of this approxi~tion can be estimated
by compazzingthe results obtained in figures 7 and 8 for the various
reflection conditions. The changes in reflection condition considered
are seen to produce only a small change in the results where the
shock Mach number is close to 1. Therefore, it se_emslikely that the
results would not be greatly altered if high Mach number shocks are
not involved by chadges in the strength of disturbances in ~royagatlng
between the shock and the end of the channel.

The time required for disturbances to propagate between the
shock and the end of the channel has also been neglected and the
significance of this mproximation can be brought out by considering
the sequence of events which would occur in the case where a very
long channel follows atstable channel shock. Assume that a pulse
moves upstream and dlsnl.acesthe shock. The shoclcthen returns to
equilibrlun at a rate which corresponds to the no-reflections case.
A downstream-+mvinq nwlae wjll be given out by the shock while It
Is out of equllj.brfum. When this pulse reaches the end of the
channel.,it vill be reflected as an ups~~e~am-.uovingpulse and will
now clisnl.ac,e”the shock In the omosite direction. (See fig. 8,
constant-pressure,or constant-velocity end conditlcm.) This process
will reneat indefinitely and there is the aossibility, which should
be investigated, that a divergent oscillation could result in some
circumstances. For the cases where this oscillation does not diverge
(and It is clear from experiment that these casea are an Important
group), the application of the boundary conditions immediately
behind the shock will suwpress the damped oscillatory motion which
would be e~ected for long chanmels and results ir.a monotonic return
to or’divergence from the equilibrium position.

.-

. —
.

—
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—

r

—
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Application to Supersonic Diffusers

h interesting application of the present analysis will be to
consider the maximum pulse which a supersonic diffuser flow with a
shock in a diverging chanael can absorb and yet return to Its

.,

initial ccmflguration (that is, its initial shockposition). Con-
sider first the effect of expansion pulses which will move the shock :
downstream. As long as the shock is not moved beyond the end of ‘-.
the diverging pert of the channel, it wouldbe expected that the . . .-
stability found earlier would return It to its original position.
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The effect of compression pulses strong enough to ~)ushthe
. shock through the diffuser throat is more j.nteresting. Aftex’the

pulse has ccnnpletelyinteracted with the shockwave (that is, %tien
the trailing edge of the pulse has Just reach tie shock), the shock

●

will be displaced by an amount which can be readily estimated from
the rule of conservation of pulse area. The results of yart I
indicate that the flow behjnd,the shock wave will assume the alternate
(subsonic) steady flow possible for this channel. If the pulse iS
suffic?.entlystrong, the displace& position of the shock will he in
the converging part of the channel where the shock position is unstable.
There is, of course, an unstable equilibrium position for the shock
in the converging mart of the channel er@ the displaced shock will
~ove away from this unstable equilibrium ~osition. If now the dis-
placed shock position is downstream from the unstable equilibrium
nosition, it will wove further dovmstrean and eventually return to
the fiivergtigp.artIof the channel where it will again assume its
stable equilibrium position. On the other hand, if the disnlaced
position”is unstream from t~e unstable equilibria shock gosition~
it will continue to move urmtream and eventually convert the i3uper-
sonjc flow in the converging part of the channel to a subsonic flow.
Thus, ‘he supersonic flow with a shock in ;~hediverging ~art of:the
channel.is stable to compression p@.ses which are not sufficiently
strong to displace the shock beyond the unstable equilibrium position
in the converging part of the channel.

.

In the practical design of supersonic diffusers, it is desirable
to ensure that disturbances of a given magnitude (that is, a given.
pulse area) do not force the shock beyond this ljmiting position.
It is, of course, also desirable that the equilibrium shock intensity
be kept as low as possible. It apyears, therefore, that ~fusers
with a long throat region, which produce a velocity distribution such
as that shown in figure 10, should be considered. In ~j.s case> the
compression pulse area that can be absorbed by the Mffuserj mat
is, the area ABCD, is jncreased.without increasing the shock intensity.
However, it will be noticed that the skin friction would also be
increased in this way. Further investigation will be necessary to ‘
determine the optimum throat len@h and shape.

Suggestions for Future Re~emch

It would be interesting to perform calculations on some of the
problems which have been studied.herein hy the characteristics
method. For example, the central mroblem of this w=, stability
of snooth deceleration through the speed of sound, could probably
be studied by this method. By starting with equations (b) and (15),

. it should be possible to trace the propagation of an upstream-movi~

.
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pu~se~ Aftnr a shock has been formed in the pulsa, it would be
necessary, of course, to introduca the Rankine-Hougonoit relations

.

b trace further devel.op,nant.It would, in particular, be very
valuable to see whether more exact calculations confirm the Lnfarence
that a tran~ed pulse converts a portion of a deceleratin~ channel

w

flow to a steady accelerating fl.owo
---
—

An experimental check on part I of thie theory couldbe obtai~
by the use of high-speed flow measure~nents. Consj.dera nozzle in
which the flow Just raaches but does not exceed the-local speed of

—

Sound. El such a flow, it would be expected that the trapped puloes
(or nearly trapped pulses) would be present due to natural or
artificial disturbances coming from the raar. It would.be anticipated
that the characteristic triangular shnpa of trapped pulses (which
would be expected also if density were plotted instead of velocity)
predicted from this theory wouldbe raadlly observable.

An e~erlmantal investigatlcm of supersonic diffusers with long
throats shouldbe conduct-ad. This study wouldbe particularly
interesting in the case of high Mach number diffusers wfth variable
gemuetry. When the geometry is variable, the only limitation on
the minimum shock intensity would be that adequata stability to
disturbances would be required. In many applications, a hi~h dis-
turbance leval will be present and an effort shou.ld.bemade in
axpariments of this kind to simulate the actual disturbances which

.=

would.be present in the anticipated practical application.

As has
flow in two
problems of

bean poj.ntedout praviousl.y,a study of unsteady transcmic
.

or three dimensions would probably do much to clarify the
the formation of nornal shaks In these flows.

CONCLUJXNGREMAFUCS

The propagation of unetrean-inovlngpulses in the sonic region
of a nonviscous decelerating cha~al flow has been studied. It 1s
noint.edout that a fairly co:npletehisto~ of a s}nallpulsa can be
obtained by consi~ering the two types of processes which occur
separate~v (parts I and II).

In part I, Riemann’s theory of the propagation of finite-
emplitude disturbances in a homogeneous medium has been extenfled

-——.-

to the case where upstream-moving pulses are suyedposed on a
—

decelerating channel flow. It Is concluded that a pulse approaches
a “trapped” state in which It cQnverts a portion of the channel to
the accelerating flow which is an alternate steady-state solution
for the channel. Shock waves are formed as the pulse is propagated,

.

.
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= in RiEYQSIUI’s problem. If it is assuned that the intensity ef. the shocks is very sma3.1,then, to a first approtimtion, it is
shown that the shocks neither consume ~g p~ge nor Uke it ~aw.
It is also shown that when a pulse interacts with a weak shock

●

which forms part of the oii’iginal equj.libriumchannel flow, the
pulse is transformed into a displacement of the shock wave. These
facts can be summed Up in the following approximate rule: the

;>
quantity J Qdx (called pulse area) is conserved in the propagation

of upstresm-moving pulses in the sonic region of a channel flow.
The theory 5.sapplied to trace tha development of a shock jn a
de Laval nozzle as the back Pressure is lowered. It is shown that
a shock forms inevitably if the back pressure is lowered below the
value which first p180d.ucessonic velocities at the throat. It iS
hoped that this calculation will be useful.in leading to the
solution of the mol*edifficult problems of the formation of shocks
in two- or three-dimensional-f].owproblems.

The central problem considered in this -paperis the stability
of channel flows involvjng smooth (shock-free) deceleration throutv~
the sueed of sounfl. Yor this pro%lem, the analysis of part I indicate,
that a pulse coming frcm the rear of the channel will remin
Ben,lanently*aQ~ed In the sonicregion. Thue, from yart I, uhe flow
has neutral.stabtlity to upetream-ilovj,ngpulses. Therefore, it.
ampears that a more accurate analysis must be i~de before stabjlity
nroblems can be considered-

.
.In mart 11, the aseuuntion of weak shocks (used in deriving the

rule of conservation of uulse area in part I) is dropped and the
motion of shock wavss @ considered.;~oreaccurately. It is necessary
to assume some type of reflection condition at the downstream channel
end before the nroblen of shock motion i~ ccqetely specified. It
is made plausible from the results that little difference jn the
shock velocity occurs when a rsnge of reflection conditions are
assumed. l%erefore, for the exploratory study of stability problems,
a simplified treatment of reflections is used, whioh permits the
calculations to be made in cksed form rather than by the I.abwicms
method of characteristics.

By combining the various reflection conditions with the
RanJcine-Hu~oniotrelations, +~e velocity of shoclcwaves in channel
flows which me out of equilibrium is com~uted. For cases where
a tra~ped pulse is superposed on a smooth deceleration through the
speed of sound, it is found that the shock always noves upstream.
Thus, trapped expansion pulses are ccmsumedby ths shock motion and
trapped compression pulses inevitably grow. It is concluded, ther-
fore, that smooth trensonic decelerationts uns~ble to compression
pulses coming from the rear of the chsnnel.

.
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The stability to small dfsturhnces of chinnel flows which,
at equilibrium, involve shock Waves is also considered in xrt ~10
It is shown that the shock position Is unstable in converging
channels and is stable to small disturbances in diver@ng chaunels.
It is made plausible that the disturbance level can affect the
minimuh shook intensity which can be attained in a practical supell-
sonic diffuser. The theory indicates that supersonic diffusers
with long throats may permit a lower shock tntensity and thus have
a higher efficiency when a high disturbance level is present.

Langley Memorial Aeronautical Laboratory
National Advisory Ccmmittee for Aeronautics

Langley Field, Vs., November 1~, 1946
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APPENDIX A

SYMBOLS

x distance measured along the axis of
positive in downstream direction

.
t time

the ch-annel; x is taken

duo
T =—

dx
t

u velocity in the x dir?ction

a local velocity of sound

P Iocaldensity

Y ratio of heat capacity at constant pressure to heat capacity
at constant volume, equal ?/5 for room-temperature air;
this value of ‘7/Sis assumed throughout this report

.
% Mach number (~/ao)

. u? =u- %

at = a _ a.

{

u+ Sa for section on disturbances superposed on a homogeneous
medium

P
Ut + ~a~ for the section on cHlsturbancessuperposed on a f16w

field

{

u - ~a form~~n on disturbances supervised on a homogeneous.

Q
U1 - %? for the section on disturbances superposed on a flow

field

~

dt
denotes de~vation with respect to time when point under

observation moves with local propagation velocity
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E displacement of a shack from its

u velocity of a

v flow velocity

s local channel

Wi(l:. TN ~;O. 1225

equilibrium position

shock wave in stationary coordinates

in coordinates moving with a shockwave

area

Subscripts:

s

o

cr

1

2

10

20

lg

2cg

stagnation conditions

local equilibritmflow conditions

equilibrium conditions for M=l

conditions ahead of a shock

conditions behind a shock

equilibrium flow condition upstream of a
shock at the equilibrium shock pos~tion

equilibrium flow condition downstream of
a shock at the equilibrium shock
position

equilibrium supersonic flow condition
upstream of a shock calculated at
the displaced shock position

equilibrium subsonic flow condition
downstream of a shock calculated at

.

. .

—

.

—

.

—

—

—.—

—

—=
,.

—

Defined in
figure 6 .’

the displaced shock position J

A bar over a quantity denotes a lower limit of integration .
. .
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APPENDIX B

APPROXIMATE FORMULAS FOR THE VELOCITY Cl!?PROPAGATION

OF SHOCK WAVTiSFOR USE IN PART I

The exact computation of shock velocity, in general, Involves
cum~ersone algebra; therefore, for use in part I, approximate
expressions will.be developed for the shock velocity. First, con-
sider the case where an upstreem-rnovingdisturbance involvlng a
shock is supe~osed on a smooth steady flow Uo. Conservation of
energy across the shock can be written

2 + ~a12 = V2
‘1

2 + 592

where the velocities are measured relative to a

.

noving with +he chock veloclty U.
of measuring velocities relative to
for equation (Bl)

(Bl)

coordinate system
Returning to the former convention
stationary coordinates gives,

(U.&!- U)2 + 5+2 (B2)

.
~troducing the steady flow and dfst’nbance quantities, as before,
gives

U02 + 2U’lU0 + ~f12 “ 2(uo + U’I)U+@ + 5a02 + 10aoall +5a’12

= U2 + 2U’2U0 + U’22 -0
2(% + u’*)U +@ + 5a02 + 10aoa’2 + 5a’22

033)

If only upstream-moving di~turbances are present, p =0, U’ =-5ai,
and equatf.on(B3) can be simplified to

U.uo-&io ‘u(u’’+u’4=utia0+*(Q1+@)‘i’)
.
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~ this calculation d.ownstiream-movingdisturbances created hy
the shock itself have been neglected.

The case where a steady flow involves a shock and where small
upetream-noving disturbances interact with the chock aleo yields a
simTle result. In this case, tie steady flow velocities on the two
sides of the shock are different and will be denoted by U1

E

and ~,,. (See fig. 6.) Equation (B2) can now be written ,,~

Since the disturbances are now assumed small compared with the corre-
sponding steady flow quantities, the shock velocity wI1l also be small
compared with the steady-flow velocity. If second- rder sm#l
quantities are neglected and it is noted that 8 +5a1~.~ 2+392

‘1,. ~ a -
equatien (B5) c-anbe written

%!~u’2 ~- Ulwu’l + 5a2.at~ - 5a1.a’1

u=, k
-U1

% E
H only upstream-moving disturbances are assumed

“1
= -,5af

1 and u’ =.ya’2,
2

Equation (B6) can

(B6)

to be present, .

then be written
..

... .

..-

,
“.
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If the variationof the steadyflow velocities Witi ~ is neglected,.
equation (B7) can be written

-*

(B8)

Thus, in goinG from equation (B7) to equation (B8) effectively, the
effects due to stability of the shook wave have been neglected in
comparison with the disturbance effects.

.“A Mnfting value of the quantitfee in parenthesis in equation (~)
as all the velocities apnroacb the local speed of sound acr can tE

found by differentiating the stea~v-flow relationship

or
Aul

%0 =--y

Similarl~ differentlati.ngthe shock relatim

2%.%O = %2

gives

Aul %0u -A
o

From these first approximations, it Is found that, for values of M
close to 1



~P

and, slmil.wly,

U1 - al
o ‘0=+3

%.-%O ,5

ThuE,equation (B9) becomes

u = ~(Ql + Q2)

mm TN No.1225

—

—

(B9)

.

.
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. APmnm c

●☛ CALOUI.ATION$W TEEIFLOW SHOWNIN H- 5

For purposesof discussion, the.disturbances will be divided
into three phases: (1) a leading phase which origlnatos while th”
pressure at the end of the nozzle is fal.1.i~j(2) a steady phase
which originates after the nozzle back pressure has reached a
steady value; and (3) a shock phase which appears, in tho case
assmed, at the @ncture of the two previousphases.

~ order to simpli~ the calculations of the leading phaae,
the rate of pressuredrop (or velocityincrease)at tho nozzleend

was chosento meke G or h’ “
37

Constsrlt.The leadingphase thus

appears as a straight line and canbe seen from equation(23)to
remaina straightline as long aa the disturbanceremainsin a
uniformlydeceleratingfield. The motionof the leadlngedge of
the disturbancein a shorttime At will be At(uo - so)- The end
point of tho leadi~ phasocanbo followedsimilmly when the steady,
phasoprcpgationhas been calculated.b

In the steadypham, no changes ere being propagatedin either
*

direction;hence, &so. Thus, a singlecurvewill be an envelope

for the disturbance~”atsuccessivetimes. This curve

by intonating equation(16),while making use of the

Equation(16)can thenbo written

For the

by $;

. 6duOu1
au’= 5*
z

‘o -ao+$u’

au
nozzleaswmed & is a constantwhichwill

then,since M. iS C1OSCI tO 1

can be found
&t

fact that -—
at

(cl)

be denoted

.

= 0.
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t’

Q&=. _k-
l+b$

Th& qzat~on can be written

X dl.lt”’+U’ ti + butdll’= O

—

NACA TN No* =25 ,. *
=

.

..+

—

.-

andlintegra’te~to give (withquantitiesreferringto the lowerlimit
denotedby bars)

From this equation, u‘ can be obtainedas a functionof x
from the knownvalue of, u’ at the end of the nozzle” This restit
has been plottedas the envelopeinfi@re 5. It willbe noticed
thqt tho slope becomes infi’niteat the point where the steady-phase
c~e reaches the 10cN speed of soundo This result ctibe readtly

verified from equation (Cl) where the denominator of th,eright-hand
side vanishes at the local.speed of sound. This point, then, is
where a shock first forms. The propagation of the disturbance up to
the pointwhere a shockformscan now be readilycalculated.Once
formal,the shockwill connectthe leadingphasewith the steady
phase.

The shockpositionand intensityat aqy time canbe calculated
stepby step as follows: First,the leadingphaseis determined
from the knownpropagati~velocltyof its leadingedge and ita
slopeas foundfrom equatton(23). Second,the shockpositionis
determinedby adding to the previous shock yosition an increment
corresponding to the shockvelocity(equation(Bk)). Thirdsthe
shockis then a verticalline (in fig. 9) connecti~ the leau~
phasewith the stea~ phase!atthe known shockpositionc

..:.

.

,
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—
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(b) Interaction

Figure 1.- The interaction
shock. The analysis of

. which disappears on the
to the pulse area which

~O~ed”~~~~e ~es ‘~f’~

x

of disturbance with shock.

of an expansion pulse with a nozzle
part I shows that the pulse area
downstream side of the shock is equal
appears due to the shock displacement
the shock. Not that the pulse areas
dx since u! = 4
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rieldsortotheleftfordeceleratingfields,theslopeohangea
ora waveanthepointunderobservationmoveswtththe100al
propagationvelooltyarel%wd. InoontpasttoRiemann*a results,
in an aooelerating flow field, a ccenpreesionwave must have a
certain initial steepness ~<-1..O before Itwill Bteepento
forma elmO~.Also,fna deoelerattng field, all expanston waves

du d%
tend to approach the slope E = -1.0 or ~ = - ~ . ~=m

effeots are illustrated adumatiaally in figure ~ for a decel-
erating field.
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Trapped pulses
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slope E = -1.0
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form shock

Original compression
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Equilibrium flow
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Figure 3.- Schematic illustration of four successive positions in the
progress of expansion and omnpression pulses in a uniformly decel-

erating field. The pulse area is conserved and pulse shape approaches
an isosceles trisngle. When the leading portion of the expansion

w

pulse or the trailiw?j portion of the compression pulse a preaches the
+’

@

local velocity of sound, the pulse approaches a “trappedi state. co
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for the trapped expansion wave with the accelerating
equilibrium flow for the same OhaMel~



NACA TN NO. 1225 Fig. 5

c

.

Mtial formation of shock

.—— —— — % =%
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as thebaokpressure1S loweredat thenozzleend* Theenvelope
ourveia calculatedin appetixCo Thesucceaa~veexpana~onwave
poaitionaarecalculatedby findingthepropagationvelooltleaor
theendpolntia.ThetimeIntervalabetween aucoeaalve poaitlona
are equal UP to t%e formation of shock and double therefd%er. The .
shook veloolty la oaloulated from the approximate equat~on (@.).
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Figure60-The notation used in shook-velocity problems.
For the case where no initial shock 1s involved in
the equilibrium flow ul

0=%0=%” ‘plicitdefi-
nitlons of the subscripts are given in appendix A.
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Ffgure7.- The velool.tyor shockwavesin trappedpulsesfor the ease

‘wherethe original equilibrium flow does, not involve shock waves.
The shock velocity is negative and thus, the shook always moves
upstream, consuming expansion pulses and making compression pulses
grow indefinitely. Computationsare made for as = 1117 feet per
secondo
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Figure 8.- The relaxation time for the return of a shock to ita
equilibrium positlon~ The value of ~ 1s computed from the

linearized shock motion equation ~+T~ = O. The value

of T la seen to be positive (stable shook position) for

~>o, ttit 1s, fordlverglng ohannels, and negative

(unstable shook position) for converging channels. For com-
parison,the relaxationtime for the approachof a pulseto

the trappedstateIs ‘~ shown by the tiashed l~nee
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Figure 9.- Fractionof the area of ~ trappedPulsew~ch is aon-
1

sumedin the ttie — . This resultIndicatesthat if the
d%.—
&

shook Intensity Is small enough, only a small fraction or the
pul.aeis consumed before the pulse Is gully trapped. In such
oases, the division Into trapphg and oonsumptlon prooeases
will be justified.
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Figure 10.- Suggested long-throat supersonic diffuser. The
liIILLt@ZCommission Dulse that oould be absorbed bv this
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dlffusei wouid have i%e pulse @es,

pulse areas plotted here are ~/Q

ABCD. Note tha~ ~he
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